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Natural-Language Interfaces

C. Raymond Perrault and Barbara J. Grosz

Artificial Intelligence Center and
Center for the Study of Language and Information
SRI International
Menlo Park, CA 94025

1. Introduction

Since the early 1960s when support decreased for machine translation, much of
the research on natural-language processing (NLP) in North America has been
motivated by its potential use for communicating with software systems.1 Natural-
language systems have been developed to extract information from databases, to control
(simulated) robots [104], to interact with graphic systems [8], to specify simulation
problems [36], and to communicate with systems embodying expertise in some task or
problem area [7, 83].

In this article we focus on interfaces to database management systems (DBMS).2
We use the term natural-language interface (or NLI) to refer to such interfaces,
unless otherwise specified. In addition to being among the earliest interface systems
developed, interfaces to databases account for most of the NLIs implemented to date
and they are the subject of a substantial literature. Although some work has been done
on the use of natural language to update databases [25] and on generating appropriate
responses, most of the work on NLIs has been concerned with interpreting queries, and
we will restrict ourselves to this problem area.

Besides discussing the main system architectures used in NNLIs, we also sketch the
body of techniques developed for them. In doing so, we distinguish between the task of
an interface (the various functions of the underlying software system, such as answering
questions, updating a database, or moving a robot) and its domain (the set of objects,
properties, and relations) denoted by the utterances it must interpret e.g. (employees
and managers).

lNotable exceptions include the story understanding programs of Schank and his colleagues [13, 86]

2We do mot discuss commercial systems even though they are becoming increasingly available [5, 51];

the first was ROBOT/INTELLECT (35].







Natural language (NL) is but one of the methods available for human-machine
interaction, but the reasons for its attractiveness are obvious:

o It provides an immediate vocabulary for talking about the contents of the
database.

e It provides a means of accessing information in the database independently
of its structure and encodings.

e It shields the user from the formal access language of the uﬁderlying system.

e It is available with 2 minimum of training to both novice and occasional
user.

Although form-filling and menu-based techniques [94] are appropriate to simple
software systems whose structure is easily learned (and whose only user may be its
designer), we conjecture that INL becomes more desirable as the following become true:

e The organization of the underlying information and procedures becomes
more complex, so that the information necessary to process one query may
be distributed widely throughout the system.

e The encoding of the information becomes more remote from everyday
concepts, perhaps for the sake of retrieval efficiency.

e The problems the user wishes to solve become so complex that even writing
a correct program in a formal query language may be difficult.

For example, the English query ‘“‘Who owns the fastest submarine?”’ translates
into over 20 lines of code [39] in the query language DATALANGUAGE. Even when
compared to the more abstract relational query languages, NL is more concise. For
instance, Warren and Pereira [99] provide the following QUEL [93] equivalent for the
query ‘‘How many countries are there in each continent?”

range of C 1s countriles
range of Cont 1s contlinents
range of I 1s inclusilons
retrieve (Cont.name, count(C.name
where C.name=I.inside and
I.outslde=Cont.name))

As indeed they must, NLIs allow the same information to be requested in a variety
of ways. For example, the foilowing queries might all be used to ask a database to
determine which manufacturers were known to have shipped equipment to Mexico:
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Who sent equipment to Mexico?

Who sent Mexico equipment?

Mexico received equipment from which manufacturers?
Equipment was sent to Mexico by whom?

The function of an NLI is to translate utterances in NL to expressions of a more
immediately interpretable form, such as the formal query language (QL) of a DBMS. In
this regard the NLI is much like a programming-language (PL) compiler although
differing from it in some important respects. The syntax of a PL is much simpler and
the language is intentionally free of both syntactic and semantic ambiguities. PLs and
their compilers assume certain primitive data types (e.g., numbers, strings). Although
programs written in these PLs may be about other types of objects (e.g., employees,
salaries), the syntax, the semantics, and the compiler of the PL are not sensitive to these
types; the programmer must explicitly provide an encoding for them into the data types
provided by the PL. NLIs, on the other hand, are inherently sensitive to the types of
objects in the domain. Thus, whereas with PLs the programmer must encode the objects
in the datatypes of the PL, with NL the decoding burden is on the interface designer.

To simplify the discussion, we assume throughout that the underlying DBs are
relational {15] and that the query language is relational calculus [16]. The relation
between other DB models and the relational model is well understood [96]; at worst they
can be accommodated by building translators to them from relational calculus.

In the following section, we introduce a small database as the basis for the
examples in this paper and we examine some of the more important problems of
interpretation that an NLI must be designed to handle. We discuss the main sources of
information available for the interpretation of utterance and outline the general features
of the architecture of three classes of NLIs. We then offer 2 more detailed desecription
of various NLI constituents, which shows how the sources of information are used by
different systems to solve the various problems of interpretation. We conclude with a
brief review of current research issues in NLP and their importance for more
sophisticated interfaces to software systems.

2. An Overview of the Problems

The flexibility and succinctness of NL for querying DBs are achieved at the cost of
problems in determining the interpretation of a query.3 Several of these problems,
which we illustrate briefly here, have received interesting general treatments within the
context of NLIs. For purposes of illustration, we consider a simple database containing
information about employees and divisions in an organization. The information about

3Succinct;ness is certainly not a characteristic of all uses of NLP: for example, it is not a property of
NL when used for the direct specification of low-level programs.



an employee includes name, salary, division, and whether or not the employee was
exempt from overtime pay. The information concerning a division includes its manager,
its revenue, and its product.

The syntactic structure of a sentence is often ambiguous. For example, in the
request, ‘‘Give me all the employees in a division making more than $50,000,” it is
unclear whether the modifying phrase “‘making more than $50,000” is meant to apply
to employees or divisions. This may be termed the modifier attachment problem.
In some cases, however, certain possibilities can be filtered out on semantic grounds.
For example, while in general, “making shoes’ in the query “Give me all the employees
in a division making shoes” could modify either ‘““employees” or “*division,” in a domain
constrained by the information our the sample database, only divisions make shoes, not
employees; thus the query in this specific case is unambiguous.

LR 12

NL sentences with determiners--words such as ‘‘the,” ‘‘each,” and ‘“‘what’’ can
have several readings, unlike the well-formed formulas of quantified logic. For example
the query ‘“What employee earns more than every division manager?” might be either a
request to name the one employee whose salary exceeds that of any division managers or
a request to name for each manager some employee who earns more than that manager.
The relative scoping of the quantifiers corresponding to the different determiners
depends on a number of factors, including the form of the utterance, the particular
determiner, and the context of use. Various solutions to this problem, which is referred
to as the quantifier scoping problem, are presented below.

The nominal compound problem is illustrated by the phrase ‘“‘sales division” in
the query ‘“Who manages the sales division?”’ Such noun-noun combinations occur
frequently in natural language. The syntax itself gives no clue as to the relationship
between ‘‘sales’ and ‘‘division.” This kind of construction can be used to express
arbitrary relationships (as illustrated by combinations like “wine glass,” ‘“‘oil pump,”
and “pump oil”") and can be extended to longer concatenations of nouns (‘‘national park
ranger station equipment procurement form'). The syntax does not even determine the
direction of “the modifier relationship (editors’ attempts to encourage helpful
hyphenation notwithstanding). For example, *‘Stanford Research Institute” formerly
referred to a research institute associated with Stanford University, whereas “"Computer
Research Institute” would likely refer to an institute organized to conduct computer
research. This problem is one of several related to modification discussed below.

The interpretation of a query may depend in a number of different ways on
previous queries and their interpretations. Of these forms of dependency, elliptical
utterances and certain uses of pronouns are prevalent in database querying.

Elliptical queries often arise because users are interested in obtaining similar
information about different objects. After making a full request, they may ask for




additional information with a single word or phrase. For example, Query (1) below can
be followed by either of the elliptical queries, (2a) or (2b), which should then be
interpreted as (3a) or (3b), respectively.

1. Who is the manager of the automobile division?

2a. of aireraft?
2b. the seeretary?

3a. Who is the manager of the aireraft division?
3b. Who is the secretary of the automobile division?

In these two examples, the ““expanded’ query is like the original one with but a
single word (different word in each case) replaced. The kind of expansion required may
be much more complex, however; for example, a simple constituent may have to be
replaced with a more complex one, as in Queries (4) and (5) below; or different parts of
the original query may require replacement as in Queries (6) and (7).

4. What is Benson's salary?

5a. the sales division manager’s
5b. the highest revenue division's manager’'s?

6. What are the salary and title of the highest paid nonexempt
employee?

7. Division of the lowest paid?
Note that query (7) might be interpreted as either (8a) or (8b).

8a. What are the salary and division of the lowest paid
nonexempt employee?

8b. What is the division of the lowest paid nonexempt employee?

Pronouns and other referring expressions provide one means of referring
repeatedly to the same entities. For example, “they’ in Query (9b) must be resolved to
refer to employees who earn more than the sales division manager.

9a. Can you tell me which employees earn more than
the sales division manager?

9b. How much do they earn?




3. Constraints on Interpretation

In computational linguistics, as well as linguistics more generally, there is
substantial disagreement (and no small amount of confusion) as to what interpretation
actually is. Agreement has yet to be reached on answers two fundamental questions:

e What receives interpretation? The alternatives include sentences, sentences
in context, sequences of sentences, and dialogues.

e What is its object? Here alternatives include truth-values (especially for
declarative sentences), answers (for questions), procedures for giving answers,
or even the mental state the speaker must be in to make his utterance.

Within the restricted realm of interfaces to DBs, it is generally taken to be
sentences and, occasionally, sequences of sentences that receive interpretations. The
interpretation given to a query is taken to be a complex predicate; this predicate is
satisfied by all the tuples of objects that are answers to the question. To allow for the
possibility of ambiguity, we will take interpretation to be a relation between sentences
and these complex predicates. For the interpretation relation to be specified, the
following must be provided:

e A number of information sources,* each consisting of a class of objects
and constraints on those objects. Thus, the syntactic information source
might have words, phrases, and features as objects, and syntactic rules as
constraints.

e Constraints that hold across information sources--expressing, for example,
the relation between parse trees and their associated senses, or between sets
of words (from the morphology) and sentences (from the syntax).

The NLI designer must also decide how the various objects and constraints will be
represented, and how interpretations or, more accurately, their representations will be
computed. One confusion that abounds in much of the computational-linguistics
literature is the identification of interpretations with representations (i.e.
interpretations are taken to be representations).

Although it is desirable for the overall theoretical account to be as modular as
possible, computational efficiency may (and often does) suggest architectures where the
various sources of information interact significantly. The kinds of information that are
considered depend upon the kinds of tasks being performed by the NLI and the
linguistic proficiency that is being sought. The standard information sources include

4These are often called Anowledge sources, but we prefer to reserve the term Anowledge for other uses,
as it suggests that the information is true; this is a connotation we wish to avoid.




morphology, syntax, the lexicon, illocutionary and discourse information, and
encyclopedic information about the domain.

The objects of morphology are words, their roots, inflections, and derivations.
Inflections in English include markers for number (to distinguish the singular
“employee” from the plural “‘employees”), gender (to distinguish the masculine ‘“him"
from the feminine ‘‘her’’), and case (to distinguish the nominative “who” from the
accusative “whom”). Derivational morphology accounts for relationships among words
of different syntactic classes, such as ‘‘inflate,” “inflation,” ‘‘inflationary,”” and
“disinflate.” Many NLIs include some treatment of inflectional morphology to minimize
the size of the lexicon. Winograd [105] provides a simple procedure. A more
sophisticated computational treatment based on finite-state transducers is presented by
Koskenniemi [59].

The objects of syntax are words, phrases, and features. Of particular concern are
phrase types (to distinguish noun phrases, prepositional phrases, and verb phrases),
constraints on phrase structure (for example, that a prepositional phrase such as ‘‘in the
auto division” consists of the preposition ‘“‘in" and the noun phrase ‘‘the auto
division’), and various phenomena collectively labelled as long-distance dependencies.
These include constraints on complements (such as that John is the person doing the
pleasing in ‘““John is eager to please” but is the one who is pleased in “John is easy to
please”). We include a brief review of various syntactic issues below; Winograd
[105] provides an excellent detailed treatment.

The illocutionary source is concerned with the actions (e.g. assertions, questions,
requests) that can be performed by using language, and with the indicators of those
actions. In written language, the principal indicator is sentence mood whether 2z
sentence is indicative, interrogative or imperative. In spoken language, intonation is
also important.

The discourse source specifies how the context established by sequences of
utterances interacts with interpretation. It includes constraints on the structure of the
sequence that are provided by linguistic expressions, as well as constraints on the
interpretation of particular phrases that derive from the form and content of previous
utterances.

The encyclopedizal.5 contains constraints derived from the ‘‘real world’; it
specifies its objects, relations, the structure of events, and the content of mental states.
Of particular importance to NLIs is the domain model, that part of the encyclopedia
describing the domain of the DB. The encyclopedia also encodes restrictions on what

5This is often called real-world or commonsense knowledge.



word senses can modify or be modified by what others (e.g. that the adjective ‘‘solvent”
can apply when to “bank’ denotes a financial institution but not when it denotes the
side of a water course), and sortal restrictions indicating that in ‘“John paid Mary” the
syntactic object “‘Mary’’ is the recipient of the payment, while in “John paid 5 dollars”
the syntactic object ‘5 dollars’ is the amount of the payment. '

NLIs, unlike general linguistic theories, also need information about the software
system to which they are interfaced. We simply call this database information.

Constraints are also necessary to relate information across information sources.
The first set of these is the lexicon, which specifies relations between words and their
senses (e.g. that the word ‘“‘bank’” has at least the two senses mentioned above). Also
important are those constraints stating how to derive the interpretations of various
syntactic constructions from those of their constituents. In some cases, these constraints
relate parse (sub)trees with interpretations, while in others syntactic and semantic rules
are linked.

Solutions to the interpretation problems mentioned in the previous section must
typically make use of several information sources. The referent of a pronoun, for
example, is constrained by syntactic, lexical, encyclopedic, and discourse information.

We have so far avoided the term semantics. In accordance with common practice
in the field, we will use semantics in three ways, generally leaving it to the context to
distinguish uses. By the model-theoretic semantics of an utterance we mean its
interpretation, subject to the constraints of the information sources. We also refer
loosely to the lexicon, encyclopedia, and illocutionary sources as semantic sources, or
simply semantics. Finally, the process of finding a representation for what we call
here the interpretation of an utterance is generally called semantic interpretation.

Most of the current attempts to develop a model-theoretic semantics for NL,
roughly parallel to that given to artificial languages, are inspired by the work of
Montague [69]'. Although Montague’s interpretations could at least in principle, be
assigned directly to sentences, his forinulation did make use of an unambiguous
intermediate formal language--the language of intensional logic. In the computational
framework such intermediate languages, or logical forms, are common. Moore
{70] examines various problematic NL constructions (e.g., adverbs, tense, quantification,
and questions) and suggests ways of encoding them in a higher-order predicate calculus
with intensional operators. Encoding of information in sematnic sources lies at the very
heart of artificial intelligence research. The articles in Hobbs & Moore [48] discuss a
number of such encoding problems, from the perspective of first-order logic and its
extensions.

The use of logical languages for representation and of formal deduction as the




means to draw inferences, as well as the desirability of a model-theoretic semanties for
NL (and for the representations constructed in the process of interpreting utterances)
are still controversial. Most studies in NL processing until the late 1970s, and many
current efforts as well, stress the computational aspects of determining an interpretation
rather than semantic issues [86, 103, 44, 74]. Much of this research emphasizes the role
of implicatures based on stereotypical and salient information.

4. System Architectures

The various architectures in NLI systems reflect different choices of what
information is to be applied (and thus what interpretation problems to attempt) and in
what manner. After sketching the three main architectures, we discuss their differences
and how these affect the range of natural language they can handle.

All systems must build at least one internal representation of a query, that is, an
expression in QL. Some systems add an explicit, purely syntactic representation: one of
the earliest and best known of these is Woods's LUNAR [109], described briefly in the
following section. Semantic grammar systems, further discussed in the next section, also
produce only a single intermediate representation, which in this case encodes constraints

from several information sources. Finally, many systems produce a separate
representation of the meaning of the query in terms of the concepts of the domain of
the DB, independently of the DB structure. We use the term

intermediate-representation language (or IRL) to refer in general to the languages
in which these representations are expressed; the particular names of IRLs in individual
systems (e.g., meaning representation language, logical form) are used only when
discussing the particular properties of those systems.®

4.1. LUNAR

The LUNAR system [100], based on earlier work by Woods [107], pioneered many
of the techniques that still underlie most NLIs. Designed as an interface to a two-file
database containing information about chemical analyses of the Apollo-11 moon rocks
and references. to the literature on those analyses, LUNAR has three components: a
parser, a semantic interpretation routine, and a query interpreter. The parser uses an
augmented transition network grammar (discussed in more detail in the section on
syntax) to produce parse trees in the form suggested by Chomsky [14]. The grammar is
a domain-independent grammar of English, which, through subsequent development as
part of several systems, has become one of the most extensive computer-based English
grammars ever constructed.

5 The optimization of the generated queries is not discussed in this paper. Whether or not IRLs are
used does not affect the question of whether, but only when and in what manner optimization can be
done.



Semantic interpretation rules are used to map parse trees to QL expressions.
Generally triggered by the head of a constituent (verbs for sentences, nouns for noun
phrases), the rules obtain interpretations of the dependent and modifying constituents;
they then combine these into the interpretation of the whole. Thus, there will be a set

of semantic interpretation rules for each noun and verb in the sublanguage covered by
the NLI.

The target of the semantic interpretation is an expression in a modal first-order
quantified language; this expression can be evaluated directly against the database to
return 2 set of records. The vocabulary of the QL inciudes all the relations encoded
directly in the DB, plus 2 number of derived relations. The only constraint on derived
relations is that it should be possible to associate with each of them its own retrieval
function, expressed in terms of the basic relations of the DB.

Figure 1 shows both the parse tree and the resulting QL query produced by
LUNAR for the sentence ‘“Which rocks contain chromite and ulvospinel?”’ LUNAR's
parses are not surface structures; in this query, the question-determiner noun phrase
“which rocks” is taken to be the logical subject of the sentence and the analysis is
analogous to that of ‘“‘which rocks such that they contain chromite and ulvospinel
exist?”’ The QL query includes two database-query specific constructs: SEQ, a general

purpose enumeration function that assumes its argument is a (precomputed) list, and
PRINTOUT.

After LUNAR, architectures of natural language processors NLPs diverged in two
directions: systems were constructed in which either (a) syntactic, lexical, encyclopedic,
and database information was encoded in one set of rules, or (b) different information
sources were kept quite separate. We examine each of these in turn.

4.2. Semantic-Grammar-Based Systems

The principal characteristic of a semantic grammar [11] is that it intentionally
collapses distinctions among information sources. INLIs that incorporate semantic
grammars vary somewhat in the details, but all classify words and phrases under a
combination of syntactic, lexical, illocutionary, and database information. Exemplars of
different approaches are PLANES [98], LADDER [39] and REL [95]. The grammar
rules incorporate categories that are oriented around a particular domain and task.”
For example, a semantic grammar for the domain of university life might contain the
categories student, instructor, and course-times; one for the domain of ships could
include ships, officers, and ship-locations. In contrast, typical categories of syntactic
grammars are ‘‘sentence’”’ and ‘‘noun phrase”. A semantic grammar for the task of

7A:s there is nothing especially semantic about these grammars, the term “aggregate grammar” might
be less confusing.
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WHICHQ ROCKS QREL NP AUX VP
/\
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/I\
WLR RO|CKS CON,TA:N AND NP NP
CHROMITE ULVOSPINEL

(FOR EVERY X7 (SEQ VOLCANICS)
(AND (CONTAIN X7 (NPR* X9 'SPINEL)) '

(CONTAIN X7 (NPR* X10 ‘CHROMITE)));
(PRINTOUT X7)}

Figure 1: Parse tree and QL query from LUNAR

database querying would have a category to cover the presentation of answers; this
category might include various interrogatives (e.g. “what is’) as well as certain
imperatives (e.g. ‘‘show me’). In contrast, a semantic grammar for an experimental
setting might include a category that covered references to hypothetical situations (e.g.
“if ...,"" “what if...,”" “‘suppose that...”"). Associated with each ‘‘syntactic’” rule in the
semantic grammar is a rule for combining the results of the interpretations of the
subconstituents into an interpretation of the consitutent being analyzed.

As an example, we can consider 2 simple semantic grammar for handling queries
about our sample database. To handle the query ‘“Who manages the automobile

division?” the grammar would include rules like the [‘ollowing:8

Grammar Fragment

<SENTENCE> — <PRESENT> <ATTRIBUTE> <DIVISION>
(db(subst (genvar *’ ‘DIVISION ATTRIBUTE")))

<PRESENT> — who (1s) / what (are) / show (me)

<ATTRIBUTE> — <ATTRNAME>

8The grammar rules and lexical categories are in roman type, the associated interpretation in italics.
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‘return ATTRNAME.*’

<DIVISION> — the <DIVNAME> division
‘for each *in DIV file with DIV-NAME.*— ‘DIVNAME"

Lexicon Fragment

manages: <ATTRNAME>
‘manager’

automoblle: <DIVNAME>
‘auto’

Figure 2 shows the “‘syntactic analysis’’ and the interpretation for the above
query. Each node of the tree is associated with an interpretation for the subtree below
it; for example, the node labelled <ATTRNAME> would (from the lexical
information) get the interpretation, ‘division’ and the node <ATTRIBUTE> would
(from the third rule) get the interpretation ‘RETURN MANAGER.X'.

<SENTENCE>
<PRESENT> <ATTRIBUTE> <DIVISION >
<ATTRNAME > <DIVNAME >
WHO MANAGES THE AUTOMOBILE DIVISION

DB({FOR EACH X IN DIV WITH DIV-NAME . X = 'AUTO
RETURN MANAGER.X}

Figure 2: Parse tree and QL query from a semantic grammar

Unlike the nodes in the parse tree produced by LUNAR, the nodes in this parse
tree are not labelled with general syntactic categories. However, as in LUNAR (and to




an even greater extent in some cases), the interpretation here assigned to a query is
essentially a piece of code that states how to retrieve the answer to the query.

As is evident from this example, a semantic grammar is both domain- and task-
dependent; a different grammar must be constructed for each application. The LIFER
system [38], on which LADDER was built, supplies a set of tools for building semantic-
grammar-based NLIs. Although LIFER. provides general capabilities for handling ellipsis
and paraphrase {the first is done by the parser and hence works for all LIFER-defined
grammars; paraphrases are handled by automatically modifying the language
definition), it too requires a new grammar for each different application domain and
task.

4.3. IRL systems

IRL systems {CHAT-80 [99], IRUS [5], PHLIQAI [85, 61], TEAM [34] and
Ginsparg's [31]) construct at least three separate representations of a query: a parse
tree, an IRL formula, and a QL query.9 Each system separates the rules stating
syntactic constraints from those that specify lexical, semantic, encyclopedic, and
discourse constraints. Typically the objects, predicates, and relations of the
encyclopedia furnish the IRL’s basic vocabulary, and the representations used for
encyclopedic constraints are quite close to those used for the QL. Encyclopedic
constraints include at least taxonomic information {types and subtypes) and constraints
on the arguments of predicates and relations.

The differences between the IRL- and other architectures can be clarified by an
example. For the query “Which countries contain a voleano and a nonvolcanic peak?”
an IRL system!® would produce a parse tree like the one in Figure 3 by using such
grammar rules as the following:

SWHQ — WHNP PREDICATE
VP — VPT NP

NP — DETP NOMHEAD

NP — NPSERIES CONJ NP

The parse, like LUNAR's, is based on a general grammar of English. {However, it

9From this perspective, the PLANES system is a hybrid; it uses a semantic grammar but actually
builds an intermediate representation of the “meaning” of the query from which it constructs the QL
query. Because its IRL, like its grammar, is designed specifically for the task it undertakes (i.e., it
comprises a collection of special-purpose ‘“frames”), we have included it with the other semantic-grammar
systems.

Owe will use an example produced by the TEAM system; the actual structures produced by other IRL
systems would, of course, differ in detail.
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is a surface structure, not a deep structure, analysis, reflecting a change in underlying
syntactic theory.) For example, the conjunction ‘‘a volcano and a nonvolcanic peak’ is
treated as a conjunction of noun phrases as was the conjunction ‘‘chromite and

ulvospinel” in the LUNAR example.!!

SWHQ
PREDICATE
Ve
vPT NPSERIES
WHNP NP
NOMHD NOMMD
NOUN DETP NCUN DETP ADIP NCUN
WHDET N v ‘ J\l ADI N
WHICH B CCUNTRY CONTAIN A VOLEAND AND A NONVOLCANIC PEAK

Figure 3: Parse tree from IRL system

The IRL representation of the interpretation of the query (in this case logical
form) is shown in Figure 4 along with the QL (in this case an expression in SODA [72]).
The IRL representation is a complex predicate composed of general predicates in the
domain; it makes no reference to the actual database structures or any retrieval process.
Only the QL representation reflects the database and the querying task. Although there
are fragments of the LUNAR QL that resemble the logical form (e.g., the representation
of the meaning of the conjoined NPs), the overall representations are different in kind.

4.4. Comparing Architectures

The different architectures provide for different ways of handling wvarious
interpretation problems. We leave until the next section discussion of the particular
ways they do so. There are five major overall differences among the architectures.

11In semantic-grammar-based systems, conjunction, if treated at all, is specialized for aggregate
categories, containing rules such as < DIVISION> — <DIVISION> and <DIVISION>.
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(QUERY (WH COUNTRY1
(COUNTRY COUNTRY1)
{SOME PEAK-VOL3
(PEAK-VOL PEAK-VOL3)
{SOME PEAK4
{AND {PEAK PEAKA)
(NONVOLCANIC PEAKA))
(AND (CONTAIN COUNTRY1 PEAK-VOL3)
{CONTAIN COUNTRY 1 PEAKA))))

({IN #:81 PEAK)

{{t#:$1 PEAK-VOL) EQ Y)

(IN #:$2 PEAK)
{{#:52 PEAK-COUNTRY) EQ (#:$1 PEAK-COUNTRY))
((#:52 PEAK-VOL) EQ N)
{7 (#:$1 PEAK-NAME))
(7 (#:$2 PEAK-NAME))
(? (#:51 PEAK-COUNTRY)))

Figure 4: IRL and QL representations from IRL system

First, the information sources that contribute to the interpretation of a query by
the system are different. Many systems, for example, make little (or only ad hoc) use of
morphological, illocutionary, or discourse constraints. In one way or another, however,
they all utilize syntactie, lexical, and database constraints.

Second, there are different ways of combining the information sources into sets of
rules. The semantic-grammar systems combine all sources into one set of rules.
LUNAR distinguishes syntactic rules from the rest. IRL systems also separate database
information and provide general constraints for mapping between syntactic
constructions and their interpretations.

Third, the application of separate sets of rules may be sequential or interleaved.
Although most systems apply the rules sequentially, IRUS uses the capabilities of the
RUS parser [6] to interleave syntactic and semantic constraints; the interleaving is
accomplished with cascaded ATNs [111]. Interleaving is done in Colmerauer’s Prolog-
based system [20] and was also used in several speech understanding systems [63, 97].

Fourth, the range of queries the systems can process at different stages is
different. In semantic-grammar-based systems, any query that can be parsed can be
translated into QL. In contrast, LUNAR and IRL-systems can syntactically analyze
some sentences for which they cannot construct a semantic interpretation. The range of



15

concepts covered also differs. In semantic-grammar-based systems, only those queries
that can be translated in QL can be interpreted at all. In contrast, in IRL systems, the
concepts (i.e., objects, properties, relations) in the domain model provide the basic
vocabulary for the IRL. A mapping from these concepts to DB structures provides the
basis for translating IRL expressions {which are in terms of the concepts of the domain
model) into QL expressions. With this sort of approach it is possible to supply
interpretations of queries for which there is no QL representation (e.g., because the DB
covers the domain only partially.)

The IRL systems all take this type of approach; the actual coverage they offer,
however, depends on how their domain models are defined. For example, the
PHLIQAI1, IRUS and CHAT-80 domain models are provided ecompietely independently
of the DB (they are essentially ‘“‘hand-built’” by the system designers); it is therefore
quite possible for them to construct IRL representations of queries for which there is no
QL representation. In contrast, the TEAM system, which automates the process of
adapting an NLI to a new domain and DB, constructs its domain model mechanically
from information supplied about the DB; this restricts the concepts to those that can be
generated from the DB concepts through relational calculus.

Finally, the architectures differ with respect to how easy it is to adapt an interface
to a new domain or DB. As remarked previously, a semantic-grammar-based system
requires extensive revision to be adapted to a new domain or task. Because all
constraints are encoded in the grammar, the grammar itself must be rewritten or at
least extensively revised. In contrast, adapting an IRL system to a new database requires
little, if any, change in the syntax rules. In some systems (IRUS, Ginsparg’s, PHLIQA1)
modification of the semantic rules is required; in others (TEAM, CHAT-80) the
semantic rules do not change; only the domain model and lexicon do.

5. Methods

A number of techniques have been developed for encoding and applying the
information sources needed to determine the interpretation of a query. In this section,
we examine various methods used to handle the interpretation problems discussed
earlier. We have chosen to focus on techniques sufficiently general for a wide range of
natural-language-processing applications. As a result, certain problem areas are covered
in more detail than others. This unequal treatment reflects, in part, a difference in the
state of the art in the various areas of NLP. The usefulness of any specific method
depends to some degree on a system's architecture; where it is relevant and not obvious,
we will remark on the applicability of 2 method to different architectures.
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5.1. Syntactic Models

With very few exceptions, phrase-structure grammars have provided the basis for
the syntactic components of NLIs. Most of these grammars, in fact, are context-free
(CF), with the possible addition of extra conditions on the subeconstituents. The
languages generated even by the extended grammars are, almost certainly, CF. In fact,
the only solid arguments contending that NLs are not weakly CF are quite recent
(Shieber [90] for Swiss-German and Culy [22] for Banbara.) Both involve constructions
not treated by grammars in existing NLIs. As with programming languages, non-CF
grammars may be used to make the deseription of CF languages easier, especially when
some constraints {subject-verb agreement, subject and object control) must be applied
to non-adjacent nodes in the parse tree. Perrault [80] surveys the known formal
properties of some of the more common syntactic formalisms. Slocum [92] compares the
performance (on several hundred sentences) of various parsing strategies.

The first substantial extension of CF grammars widely used in NLP was the
augmented transition network grammar {ATNG) of Woods [108]. The ATNG is
a two-step generalization of the Finite-State Automaton (FSA) [49]. The FSA has a
finite set of states; transitions among them are allowed when certain symbols appear in
the input. One of the states is distinguished as the start state, one or more as final
states. The input string is accepted if it leads to a sequence of acceptable transitions
from the start state to a final state. The languages recognized by FSAs are the finite-
state, or Type 3 languages. Recursive transition networks (RTN) generalize FSAs
by allowing a transition between two states to be taken via a recursive jump to a start
state. RTNs recognize exactly the class of CF languages. Finally, the ATNG adds to
the RTN a finite set of registers and actions that can set registers to words observed
in the input, their corresponding lexical entries, or to some function of the contents of
other registers; a recursive call to the network can pass values back to its calling level,
which can in turn assign that value to a register. Transitions can be made conditional
on register contents. ATNGs generate all recursively enumerable sets.

Because grammars for all but the smallest subsets of NLs are ambiguous, the
LR(k) techniques often used for parsing PLs are generally not applicable to NLs. In
their place, a number of parsing algorithms have been developed.

ATNGs are naturally implemented in recursive top-down parsers; in fact, in the
early literature on the subject, grammars and parsers were hardly distinguishable from
one another. The register assignment mechanism makes it difficult to conceive of using
the grammar in other than a top-down left-to-right parsing scheme.

Much effort was devoted to efficient implementation of top-down ATN parsers.
In the early implementations, the grammar and the lexicon were encoded as LISP data
structures and interpreted by the parser. Burton & Woods [12] then showed how to
compile the parser and the grammar into a large LISP program, and then, through the
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LISP compiler, into machine language. Compilation improved parsing performance by
an order of magnitude.

However, pure top-down parsers suffer from some well-known problems. First,
they cannot handle left-recursive constructions (as in ‘‘John’s father’s brother’s book™),
and second, their backtracking regimes may be very inefficient. The left-recursion
problem can be solved by converting the grammar to a weakly-equivalent right-
recursive one, but at the cost of complicating the process of deriving the interpretation.

The backtracking problem has been addressed in two quite different ways. The
first has been through extensions of bottom-up (Cocke-Kasami-Younger [112]) and
Earley [26] parsing strategies to non-CF grammars. These methods include use of the
well-formed substring table [60, 106] and charts [55].

The second, and more radical, line is based on Marcus’s Determinism Hypothesis.
Marcus (1980) [65] that English (and possibly other NLs) can be parsed by a mechanism
that operates ‘‘strictly deterministically,” in that

e All syntactic structures created by the parser operating on an input string
are permanent and must be included in the output produced for that input.

e The internal state of the mechanism is constrained so that it cannot encode
temporary syntactic structures.

Marcus designed a parser satisfying these conditions (along with a small grammar for it)
that captures interesting generalizations related to such phenomena as passives,
imperatives, and yes/no questions. He also suggests a simple explanation for so-called
garden path sentences, such as ‘“The horse raced past the barn fell” and “Have the
students who failed the exam take the supplemental” (closely related to “Have the
students who failed the exam taken the supplemental?’’). These sentences are perfectly
grammatical, but their analysis by humans seems to require conscious backtracking.
The determinism hypothesis is not without problems. For example, it depends
essentially on” an integration of syntactic and semantic analysis that remains to be
demonstrated convincingly; moreover, no large deterministic grammar has yet been
written. However, Marcus’s work has influenced the design of some ATN parsers that
now utilize look-ahead to reduce backtracking [6]. Recently, he suggests representing
syntactic analyses as logical formulas over the domain of syntactic nodes, in which the
disjunction of the possible attachments can be stated, or in which no attachments are
stated at all, save those that preserve the left-to-right order of constituents in the
sentence [66].

Another problem with ATNs was that the dependence of the grammar on left-to-
right processing made it very difficult to use the same grammar with different control
regimes. For example, if subject-verb agreement was to be tested by having the parser
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assign to an ATN register the number of the subject noun phase, so that this register
could then be tested upon encountering the main verb, this procedure would fail if the
parser encountered the verb before the subject. In doing research on speech-
understanding systems, Paxton [75] and Wolf & Woods [106] investigated parsing
“middle-out,” that is, starting from the highly stressed parts of the sentence and
constructed parsers that were not order-dependent. In a different vein, some workers
on language generation [54, 2| have argued that it is desirable to be able to make
decisions about syntactic constituents independently of the order in which they are to
appear in the utterance. It is not possible to do this, however, with an order-dependent
ATN.

Although the need for order independence is still controversial (see Wolf & Woods
[106] for speech recognition and MecDonald [68] for language generation), several
proposals to achieve it have been made, relying on unification of graphs as the main
operation in parsing. One of the earliest proposals in this direction was Kay's
functional-unification grammar (FUG) [56]. In several of these formalisms, grammatical
rules are represented as formulas in first-order logic, or more accurately, in its Horn
clause subset. In these logic grammars (under various guises known as metamorphosis
grammars [19], definite-clause grammars [78], extraposition grammars [76], modular
grammars [67] and others), predicates are defined to be true of strings meeting certain
conditions, such as NPs. Nonlocal syntactic constraints and semantic constraints can be
imposed by enabling the predicates to take on extra arguments allowing information to
be propagated across the analysis. Subject-verb agreement provides a very simple
example. Consider the following very simple grammar, expressed as first-order
sentences. According to the conventions of Prolog, identifiers starting with an upper-
case letter are variables and all free variables are assumed to be universally quantified.
The indices I, J, and K take integer values denoting positions between words in a
sentence.

s(I,J,Number) ¢+ np(I,K,Number) & vp(K+1,J,Number)
vp(I,K,Number) & v(I,K,Number)

np(I,K,Number) < occurs(I,I+1,the) & n(I+1,K,Number)
n{I,I+1,Number) & occurs(I,I+1,X) & lex(¥X,n,Number)
v(I,I+1,Number) ¢ occurs(Il,I+1,X) & lex(X,v,Number)

If the lexicon contains the assertions

lex(fish, n, singular)
lex(fish, n, plural)
lex(fish, v, singular)
lex(swim, v, plural)
lex(swims, v, singular)

then the sentence ‘“‘the fish swims” can be recognized as generated by the
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grammar by asserting

occurs(1,2,the) & occurs(2,3,fish) & occurs(3,4, swims)
and then proving that

@M s,4,8.

The heart of logic grammars is their use of unification as a way to test the
compatibility of information and to propagate constraints. Although definite-clause
grammars, for example, provide all the necessary expressive power within Prolog, this
power is achieved at the cost of a certain lack of perspicuity: the constraining predicates
end up having as many arguments as there are ‘‘pieces of information” that they
control or that must be propagated through them. These arguments are all specified
positionally; in the example above, the first two arguments denote the delimiting
positions in the input string, while the third denotes the number feature of the subject

and verb. This can easily lead to very long argument lists whose management is
difficult.

In the last few vyears, several more perspicuous unification-based syntactic
formalisms have been developed that derive their inspiration from both the linguistic
and computational traditions. ¥rom pure linguistics have come lexical-functional
grammar [52] and generalized phrase-structure grammar {30], which are full syntactic
theories, including formalisms for representing rules and derivations and general
constraints on the use of these formalisms. Coming from the computational perspective,
the already mentioned FUG of [Kay and PATR-II [89] are formalisms only, without
theoretical commitment.!? The semantics of the formalisms has been studied with the
tools of denotational semantics [87] by Pereira and Shieber [79]. Kay has investigated
the use of FUG for both generation and recognition.

Writing the extensive grammars needed by useful NLIs is still a difficult task that
is normally performed only in research centers with substantial resources. Some
examples are the LUNAR grammar, revised through several projects at Bolt, Beranek
and Newman and now part of the IRUS system [5], the DIAGRAM grammar [82], first
developed at SRI as part of the SRI Speech-Understanding Project [97] and now
included in the TEAM system, and the grammar of the Linguistic String Project [84].

Most ‘‘practical” grammar-writing exercises result in very liberal grammars that
will accept sentences native speakers would not consider grammatical. There are three
reasons for this. First, since grammars are devices that permit (rather than proscribe)
membership in a language, it is often easier to write a small number of very general
rules than a large number of specific ones. Second, it may be easier to exclude

‘) - N
12 This is also the case with ATNGs and definite-clause grammars.



uninterpretable sentences on nonsyntactic grounds. Finally, one might want to allow
certain nonstandard sentences (e.g., telegraphic speech) to be treated as if they were
grammatical [102], if there is reason to believe that users would want to express
themselves that way. The main practical drawback in such a liberal position is that, by
proliferating parses, it becomes much more difficult to select one that is semantically
acceptable.

No discussion of syntactic models would be complete without mention of the
transformational grammars (TG) introduced by Chomsky [14]. They have provided the
framework for much of the theoretical work on syntax since the 1960s. A TG has two
main constituents: a base grammar, usually a phrase-structure grammar, and a set of
transformations. = The base grammar generates a class of trees, to which the
transformations are applied to rearrange, copy, and delete constituents. The sentences
of the language are the yield strings of the trees resulting from all possible applications
of the transformations to all possible base trees. The details of the number and power
of the transformations have changed considerably since their introduction in 1957, but,
in some early versions of the theory, a passive sentence and its corresponding active
sentence were transformationally related.

It therefore seemed plausible that one could build a parser that would take a
sentence, construct a surface structure, and apply to it the transformations in reverse to
obtain a base tree representing the interpretation of the sentence. This technique was
first tried in a system built at MITRE [113] and then in the REQUEST and TQA
systems built by Petrick, Plath and Damerau at IBM [24, 81]. One of the problems
with the approach is that the inverse transformations can be applied only to the surface
trees, even though the TG does not, in general, characterize those trees in any
computable manner. The aforementioned systems dealt with this problem by
handcrafting surface grammars. The TQA system is exceptional in that it is one of the
very few to have been put to substantial use by bona fide users while it was undergoing
development.

5.2. Semantic Interpretation
We turn now to semantic interpretation, the process of translating syntactic

analyses into IRL.!1®> The translation involves establishing three kinds of
correspondences:

e Between the words of an NL and expressions in the IRL.

¢ Between various constituents of an NL phrase (e.g., head, subject, object,

13Some systems, including those using semantic grammars and several built by Schank and his
colleagues [86, 62|, never construct an explicit representation of the syntactic analysis but go directly from
NL to IRL.
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modifier) and the constituents of the expressions to which théy correspond in
the IRL (e.g., argument of a predicate, value of a field).

e Between the scope of determiners and other operators of an NL expression
and the scope of the quantifiers to which they correspond in the IRL.

5.2.1. Vocabulary Correspondences

The first issue in semantic interpretation is the correspondence between words of
the language and concepts in IRL. Some common nouns in English--such as “man” in
“John is a man’ -- correspond to one-place predicates in IRL and others--such as
“manager’” in ‘“‘John is the manager of the sales department’’ correspond to relations.
Verbs correspond to predicates--as in ‘‘John sleeps’’ -- or to relations—as in “‘John
manages the sales department.” Some adjectives, such as ‘‘exempt” in our fragment,
can be interpreted as one-place predicates, although this solution is generally
inadequate: adjectives such as “tall’”” must be interpreted differently, so that “tall men”
and ‘‘tall babies” do not refer to things that are independently tall and men, or tall and
babies. “Former senators” and “‘alleged thieves'' are certainly not senators and possibly
not thieves. In systems in which the IRL is first-order logic, the presence of these
adjectives may affect the interpretation of the nouns they modify; when this occurs, the
lexical-assignment problem interacts with the modifier-attachment problem. In LUNAR,
for example, ‘‘analyses” and ‘‘modal analyses’” are translated by two unrelated
predicates. Prepositions correspond in some instances to relations (as in “What
employees are tn the sales department?’’), while in others they are markers of the case
of arguments of other predicates (as in “Did Bill go to Boston?”’). Their interpretation
varies according to the situation of use; Herskovits [41] provides an excellent discussion
of locative prepositions (e.g., ‘‘on,”” ‘“near,” “‘beside’) as well as a theoretical framework
for handling them.

5.2.2. Modification and Attachment

There are various ways in which the meanings of constituents of a phrase can
combine to determine, at least to some extent, the meaning of the entire phrase. Two
special kinds of problems arise in computing these combinations:

e The surface form may not determine a unique association among the
elements in a phrase; this happens, for example, with the attachment of
prepositional phrases.

e Even when the association of constituents is clear, it may not be obvious
exactly how the meanings combine; this may occur with combinations of
adjectives and nouns, or with two nouns.

Proposed solutions to the attachment problem fall into three classes:

e The syntactic component makes direct use of lexical and encyclopedic
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constraints and produces only attachments that satisfy all of them
simultaneously.

e The syntactic component produces structures corresponding to all possible
attachments, which are then filtered by other constraints.

e The syntactic component proposes one attachment only, representing all the
alternatives, and the semantic interpretation component is allowed to move
the attached phrase so as to satisfy the other constraints as well.

, Semantic grammar systems adopt the first approach. Some logic grammar
systems [20, 23] do likewise; these keep the syntactic categories separate, but have a
single set of rules that constructs syntactic and IRL representations simultaneously.
The second approach has the simplest organization and is used in many large systems
such as LUNAR and TEAM. The third is used by CHAT-80. The last two approaches
use case frames [10, 28] to encode the relations between verbs, their syntactic cases,
restrictions on the types of the fillers of the cases, the target language predicate, and the
correspondence between the syntactic case fillers and the arguments of the target
predicate. Woods [110] and Pereira [77] contain excellent discussions of these topics.

The selection of IRL predicates to correspond to NL words has a considerable
effect on the resolution of attachment problems. For example, the verb ‘*have” can be
used to express a have-as-part relationship (‘““A car has an engine), an ownership
relationship (“Susie has a Porsche’), and a have-as-property relationship (‘‘Jack has red
hair’'), among others. This variety is also found with prepositions (“John is in the sales
department,” ‘“‘John is in Europe'), genitives (‘‘Joe’s finger,” ‘‘Joe’s mother,” ‘‘Joe’s
house,” ‘“‘Joe’s friend’’) and nominal compounds (“American ship,” ‘““American car,”
““American cooking').

Although different kinds of surface forms give rise to these semantic problems,
their treatment is similar in two ways. First, the resolution of the indefiniteness
requires a search for the most reasonable relationship that can hold between two
concepts. In the case of nominal compounds and genitives, these are the immediate
constituents of the phrase ( “Joe” and ‘‘finger,” ‘“American” and ‘‘car’’), whereas for
verbs (“‘have” and “‘be'’) and prepositions (e.g., ‘‘employees in sales’”) the two concepts
being related are structurally more distant from each other. Second, the larger context
of the discourse may make possible interpretations that would not arise in isolation. For
example, although the phrase ‘“Boston flights would not ordinarily be taken to refer to
flights that are only passing through Boston, in the two- query sequence, “Which flights
from London to St. Louis enter the U.S. through Boston or Philadelphia? What times
do the Boston flights leave?” the phrase receives precisely this interpretation.

Syntactic constraints determine which pairs of concepts need to be related for all
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of these constructs except mominal compounds that include more than two nouns, but
they do not further constrain the particular relationship. Because the relationship that
may hold between the two concepts may be arbitrarily complex, some proposals for
handling noun-noun relations in general [46] depend on sophisticated inferential
capabilities and a complex mode! of the domain. Several techniques have been developed
for handling a narrow range of such expressions under the assumption that users will
not create new constructions (e.g., using the phrase “toilet paper submarine' to refer to
a recently mentioned submarine that needs a resupply of toilet paper). Isabelle
[50] surveys the nominal compound problem. Finin [29] presents a set of rules for
handling those nominal compounds that can be resolved in terms of case relationships
or type hierarchies. The TEAM system includes a limited treatment for nominal
compounds as well as several other related problems that uses relationships derived
straightforwardly from the database structure.

5.2.3. Scoping

The third set of interpretation questions involves determination of the relative
scope in the target language of quantifiers corresponding to such NL determiners as
“a,'’ “the,” ‘“‘each,” and “‘most’” as well as to such operators as negation, tense, modals,
and superlatives (“‘most,” ‘“‘oldest”). Viewed syntactically, the determiners occur in
noun phrases, within the scope of verbs, but in first-order representations the
quantifiers must be given wider scope than the predicates. Syntactically again,
determiners can occur within one another’s scope, as in ‘‘each manager of some
division,” or in parallel, as in ‘‘each manager manages some division.” Operators can
occur at the noun phrase level, such as in superlatives and in the negation in “none,” or
at the sentence level, such as in tense, modals, and sentential negation.

Even within noun phrases there may be changes in relative scope between the
syntactic representation and the IRL: the interpretation of ‘“Some employee of each
manager is exempt’” is that, for each manager, some employee of that manager is
exempt. However, there are syntactic limits to how far up a quantifier can migrate: for
example, no quantifier can move out of a relative clause, so that ‘“Who is the manager
who manages every employee?” cannot mean “For each employee, who is his manager?”

Aside from such syntactic constraints, all other relative scopings of the quantifiers
are possible in certain circumstances, although some heuristics are useful for ranking the
plausibility of the interpretations. Two can be mentioned. One simply gives preference
to relative scopings, while preserving the left-to-right order of the corresponding
determiners in the sentence. Thus, “Every manager manages some employee” would be
read preferably as “‘For every manager m there is some employee e such that m
manages e.”’ Similarly, the preferred interpretation of ‘““Some employee is managed by
every manager’' gives ‘‘some’’ wider scope than ‘“‘every.” Another heuristic, suggested
by Hintikka [42] and used by Hendrix [40], associates with each determiner not only a
corresponding quantifier, but also a ‘‘strength.” Interpretations in which stronger



quantifiers outscope weaker ones are preferred. Thus “each’ is stronger than ‘‘all,”
“any’ and ‘‘some,’” so that in “Some manager manages each employee' there is a
different manager for each employee, while in ‘“Some manager manages every
employee,” either interpretation is possible, since ‘‘some’ and ‘‘every” have similar
strengths.

Presuppositions also affect scope. For example, in “What is the salary of all
employees?” the determiner ‘‘all” probably should be given wider scope than ‘“‘the,”
simply because it is unlikely that all employees would be receiving the same salary; the
latter interpretation would violate the presupposition that the question has an answer.
Although some computational work on presupposition has been done [101], [53], it does
not deal with scoping. ‘

Woods [110] proposed a compositional method for semantic interpretation in
which phrases are assigned interpretations consisting of two constituents: a quantifier
and a matrix proposition. The composition rules for a constituent combine the
interpretations of the subconstituents by combining the matrix elements, nesting the
quantifiers among themselves, or wrapping them around the matrices. This framework
has been the basis for most scoping schemes since then. It has also been arrived at
independently by theoretical linguists [21]. Woods’s rules in LUNAR produce only one
scoping, which is obtained by pushing quantifiers up the parse tree past their weaker
counterparts until they reach a “hard” boundary, such as the top of a relative clause or
a conjunction. Arbitration between quantifiers of similar strength is done on the basis
of the left-to-right heuristic. A similar strategy is used in CHAT-80. TEAM applies a
generate-and-test algorithm, in which all scopings that are not disallowed by syntactic
constraints are produced; these are ranked by a set of heuristics. This framework
allows better use of the quantifier strength heuristics.

In practice, the treatment of quantifier scoping in semantic-grammar systems is
very limited. They could use LUNAR-style rules, but tend not to. Lacking an
intermediate representation, they have no way of applying more global scoping
strategies.

5.3. Discourse-Level Interpretation

Users of an NLI are typically interested in getting information from a database to
use in solving some problem. It is rare that a single piece of information is all that is
required; even when such is the case, the user may not be able to request it in a single
query. Although no NLI contains a sophisticated or general model of the query
dialogue, most incorporate some capabilities for handling a limited range of these
discourse-related expressions. Special attention has been paid to some kinds of referring
expressions (pronouns) as well as to certain constrained uses of elliptical phrases. In this
section, we describe the basic techniques used in NLIs and provide a brief overview of
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the techniques currently being investigated by researchers concerned with more general
applications of NLP.

5.3.1. The Interpretation of Referring Expressions

Two kinds of referring expressions are prevalent in database queries, pronouns
(especially, “‘it” and “‘they,” but also “he” and “she”) and definite descriptions (‘‘the
shoe department,” ‘‘the U.S. peak). To handle such expressions in a comprehensive
manner requires a general model of the discourse context that takes into account the
structure of the overall discourse and the purposes behind it [33, 64]; in addition, the
mode]l must take into account the features of the immediate discourse context of
neighboring utterances [91, 32] as well as the structure and interpretation of an
individual utterance [100, 37|. Each of these aspects of discourse context constitutes an
active area of investigation in NLP.

The techniques used in NLIs are aimed not at providing a general solution, but at
covering the most common uses of pronouns in database querying. Typically, the
interpretation of pronouns is based on a ‘‘history list” which contains a record of the
most recent preceding queries (i.e., some given number of these). The list distinguishes
those expressions in each query that either introduce something new into the discourse
or refer to something already introduced (these usually correspond to noun phrases),
along with their Interpretations and positions in the parse. When a pronoun is
encountered, a search is made through the list (starting with the most recent entries) to
find an expression or interpretation (depending on the type of system) that matches the
pronoun (the same number and gender) and is compatible with the interpretation of the

query.

For example, following the query “What is the division of the highest paid
secretary?”” the history list would include both ‘‘division of the highest paid secretary”
and “highest paid secretary’’ (perhaps along with other information about each phrase).
In interpreting the subsequent query “How many employees does 2t have?’’, the pronoun
“1t” is taken to refer to the same thing as ‘‘the division of the highest paid secretary’
because divisions have employees and secretaries normally do not.

In semantic-grammar systems there are usually special rules that explicitly
mention pronouns. For example, the following pair of rules might be used to provide an
interpretation of the query “What is its revenue?”’ following the query, “What
department has the smallest number of employees?"”

<SENTENCE> — what 1s <DEPT-POSSESSIVE> <ATTRIBUTE>
<DEPT-POSSESSIVE> — 1ts

When a pronoun is encountered in a particular construction, one of these rules is
matched. This triggers a search through the history list for an expression that matches a
particular category; the category searched for depends on the matched rule.
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LUNAR also allows for references to objects dependent on other quantified
objects, as in ‘“What is the silicon content of each voleanic sample? What is iis
magnesium content?’’ The most general treatment of pronouns in IRL systems takes
into account the syntactic structure of preceding queries to give a preference ordering
on candidates and omit certain of these on the basis of syntactic constraints [45].
Various aspects of the pronoun resolution problem have been treated more generally in
NLP research; Hirst [43] provides a good overview.

Because an adequate treatment of definite descriptions requires a model of
discourse context, NLIs typically ignore the referring properties of such descriptions and
take their interpretation to be all objects matching the description. In essence, these
systems assume either a particular context in which there is only one object that
matches a certain description or they assume that all items fitting that description are
equally relevant. They ignore the difference between definitely and indefinitely
determined noun phrases (e.g., “‘the G.M. employees’” and “G.M. employees” are
treated identically). Although this may be fine for an isolated query, it can lead to
incorrect responses in context. For example, in isolation the query, *“Who manages the
G.M. employees?’’ might be a request for a list of the managers of all G.M. employees;
on the other hand, in a context in which the user has just asked for the names of all
employees earning more than $30,000, it may be a request solely for the managers of
those G.M. employees earning more than $30,000.

5.3.2. Ellipsis

The term ellipsis refers to the omission of certain elements from what would
ordinarily constitute the full syntactically correct form of a phrase. The interpretation
of an elliptical phrase depends on recovering the missing information from the context
in which the phrase is used. The treatinent of ellipsis in NLIs has been restricted to the
use of elliptical queries like those given in the beginning of this paper.

Two different approaches to ellipsis have been taken. One is to encode elliptical
phrases directly in the grammar; the other is to modify the parser. The second approach
not only allows. broader coverage, but also is more easily adaptable to new domains and
databases.

The encoding of elliptical fragments directly in the grammar has been domne both
for IRL systems [97] and for semantic-grammar systems [11]. In each case special
grammar rules provide for incomplete phrases to be used in certain circumstances. For
example, a syntactic grammar might include a rule like

S — NP

to allow a single noun phrase to be used in place of a complete sentence. Likewise a
semantic grammar might include a rule such as



<query> — <division>
Such rules would cover a sequence like

Who are the secretaries in the sales department?
The research department?

The interpretation rules or processes attached to these fragment rules construet an
interpretation of the fragment and then search through the history of previous
interactions (in some cases, only the preceding query is considered; this is often correct)
to find an interpretation into which this piece can fit; the mateh is determined on the
basis of a number of constraints, typically including lexical and encyclopedic ones.

A more general solution is provided by modifying the parser. This has been done
for semantic-grammar NLIs that are based on a top-down parse using an ATN [38], but
not for NLIs with more general grammars. The resulting parser remains efficient for
the semantie grammars because of the additional semantic and pragmatic information
encoded directly in them.

5.4. Semantic Coverage

One of the most important questions in NLIs is the relation between the
expressivity of NL, IRL and QL. IRLs are less expressive than NLs, if only because
their basic vocabularies (predicates and constants) are restricted to specific domains and
tasks. They may, however, be more expressive than QLs in that they may admit logical
concepts that are beyond the deductive abilities of the DBMS that interprets the QLs.
The logical form of the TEAM system, for example, allows for modal operators (such as
tense) and higher-order functions (such as maximum, count, and average) that lie
beyond the deductive abilities of relational caleulus, although their addition still leaves
the QL decidable. This extra expressivity, often obtainable at little cost, makes it
possible for parts of the NLI to be used eventually with software systems of greater
deductive power.

There miay be NL queries for which no corresponding QL representations exist.
However, we claim that for any query that can be put to a DBMS in QL, there should
be a corresponding query in NL that the NLI ecan translate into QL to generate the
same answer. We call this the accessibility requirement. It is the analogue in NLIs
of Turing equivalence between a high-order programming language and the language
into which it is compiled.

In the remainder of this section we show that NLIs in general do not meet the
accessibility requirement. In the following section, we illustrate ways of regaining
accessibility.

The translation from IRL to QL is usually done according to what we will call the



rewrite method: atomic elements of the IRL representation language are rewritten
into possibly complex expressions of QL. Thus, for example, IRL atoms may be
mapped into expressions in QL that contain references to various parts of the DB (files,
fields, values, etc.) and operations upon them. In relational algebra, such operations
would include union, projection, and join-—-often enhanced by the so-called aggregate
functions, such as maximum, minimum, average, and count. In logic-based systems, the
operators are those of first-order logic.

Any NL query representable in QL has an answer in the DB, as all relational-
calculus queries are decidable. There are, however, NL (or IRL)} queries to which there
exist answers in the DB, but which have no corresponding QL queries, at least none
constructible under the rewrite method assumption. For example, the Navy Blue File,
for which the LADDER system was written, contained a SHIP file in which a Boolean
field DOB (for doctor-on-board) recorded whether or not a ship carried any doctors.
The database contained no other mention of doctors, or of persons being on board
ships. Thus, the IRL concepts doctor and on-board-of cannot be expressed separately as
relational-calculus expressions in this database. As a result, the query ‘‘Is there a doctor
on board the Fox?" can be interpreted only if the phrase “‘a doctor on board” (or its

IRL equivalent) can be rewritten directly into a reference to the database field DOB.!

Introducing special translations for fixed phrases does not solve the problem in
general. For example, the query ‘‘Is there a doctor within 500 miles of the Fox?"' can
be answered from the information in the Blue File, but it can be interpreted only by
introducing translations for doctor and on-board-of separately.

The problem is not that the information is lacking in the database; that would
explain why the query “How many doctors are on the Fox?"” could not be answered.
Neither is it only that the database does not represent certain objects, properties, and
relationships directly (e.g., the Blue File does not explicitly represent doctors, or
indicate who is on what vessel), and that it is not possible, by means of relational
algebra, to construct from the existing relations one that does represent these explicitly
(doctors, for example). The problem is inherent in the assumption of the rewrite
method that atoms of the IRL map to expressions in the QL; hence, this method does
not provide a way to take expressions in IRL to atoms in QL. The deductive method
described in the following section is one solution.

14A similar problem arises in a database in which every person is related directly to his or her
grandfather, e.g., in the single relation GRANDFATHER(YOUNG, OLD). The query “Who is the father
of the father of John?” has an answer in the DB, but “father” is not expressible as a function of

GRANDFATHER.
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6. Future directions

Thus far, we have focused our attention on natural-language interfaces to DBMS.
More broadly, in the context of natural-language processing, it is important to consider
what issues need to be addressed to provide capabilities for users to communicate in
natural language with a wider range of software. Two major obstacles stand in the
way.

® Providing general procedures for bridging the gap between the concepts that
can be expressed in natural language and the underlying software systems.

e Providing general mechanisms to allow the user and the computer system to
cooperate in solving the user’s problem by engaging in a dialogue.

One strategy for overcoming the first obstacle is suggested by a solution to the
problem inherent in the use of the rewrite method--i.e., that certain queries that can be
made in QL cannot be asked in NL. Instead of placing the semantic burden on the QL,
as most existing systems do, this strategy places it on the IRL.

The ability to sustain interaction requires a different perspective as to the function
of the interface. It must be considered not merely as a translator of sentences of one
language into those of another, but rather as a recognizer of the user’s intentions and as
a collaborator in bringing about their satisfaction.

8.1. Putting Query Languages in their Place

A solution to the doctor-on-board problem is readily available if two conditions
are met: (1) first-order logic (FOL) is taken as as the IRL, and (2) all the information in
the database is encoded in IRL. The second condition can be relaxed as we will do
shortly. Under these assumptions, it is now possibile to define the relations encoded in
the DB directly in terms of the domain concepts in IRL, rather than vice versa. If the
contents of the DB are now converted into ground literals in IRL, the answer retrieval
process can be implemented as deduction in IRL. In the ship DB, this means including
an axiom that defines the DOB field from the DB in IRL:

DOB(x) & 3d ship(x) A doctor{(d) A on-board(d,x)

where ship, doctor, and on-board are predicates of IRL. The query “Is there a doctor
on board the Fox?”” would be represented in IRL by

dd 3x ship(x) A doctor(d) A on-board(d,x) A x = Fox

which is true if DOB(Fox) is true. Similarly, “Is there a doctor within 500 miles of the
Fox?” would be represented in IRL by

dd, dloec, sloc, s, dist doctor(d) A locatlon(d,dloc) A
location(s,sloc) A s = Fox A
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dlstance(dloc, sloc, dlst) A dist < 500 mlles.
Obtaining the correct answer now depends on having axioms such as
on-board(d,x) A locatlon{(d, dloc) A locatlon(s, sloc) =dloc =

We will call this second view of the language-to-DB correspondence the deductive
method.

Now, in a sense, the deductive method is an unacceptable solution to the answer
retrieval problem, because it does not use the DBMS as an inference engine--all
deduction is done directly in IRL. I{onolige [57] presents a better solution in which a
QL query is actually constructed, but deduction rather than rewriting is used. The
language in which deduction is performed contains IRL, but it also includes as terms
the syntactic constructs of QL. Axioms are provided that express the relationships
between the relations of IRL and the terms of QL.

Konolige's solution suggests a picture of the relation between an NLI and its
underlying software that is rather different from the one suggested by analogy to
programming-language compilers. The NLI must be able to draw inferences on its own,
independently of whatever “black boxes' it may be connected to. Some of these boxes
may themselves be specialized inference machines (DBMSs are clear examples of this),
but their operation and semantics must be subordinate to those of NL.

6.2. Participating in a Dialogue

Although superficially it may appear that users of NLIs are merely asking
questions, at a deeper level they are almost always engaged in a problem solving activity
that requires them to obtain information from the DB. The view that interactive
sessions with NLIs are Instances of cooperative problem-solving behavior offers a more
useful perspective not only on interaction with a database in particular, but on human-
machine interaction in general. From this perspective, a user is seen as interacting with
a system to effect a certain change in the world. The user might intend to accomplish
this directly by- getting the system to do something, or indirectly by getting the system
to communicate some fact. Utterances are actions that change the world and provide
information about the mental state of the utterer--most notably, about certain of his or
her beliefs and intentions [4, 88].

When language use is examined from this perspective, discourses {i.e., extended
sequences of utterances), not individual utterances are the natural unit of analysis; what
the user intends to do and not what he has said is ultimately what matters. This point
of view may make a difference even for some simple database query applications (the
need to take this view can be inferred somewhat from the range of constructions that
most NLIs attempt to handle and that go beyond simple questions). but it is vitally
important from the standpoint of providing NL interaction with . hroader range of
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software systems (e.g., decision support systems). This point is nicely illustrated by the
following short dialogue segment:

(1) U: 1 need to know which divisions earned less than $500,000 in 1985.
(2) S: The automobile division

(3) U: Consider its performance over the last five years.
(4) Can you show me a histogram by month?

Although Utterance (1) is superficially a statement about U's mental state, it is
intended as a request for some information. If it were merely a report on U's mental
state, a response acknowledging that (e.g., **OI{. I understand.””) would then suffice but
such a reply is clearly unreasonable. Utterance (3) demonstrates that, even in a simple
query-like context, the system’s responses are an important part of the dialogue. The
“‘its”” is used to refer to the automobile division, a singular entity; Utterance (1) contains
only a plural noun phrase and, if Utterance (2) were ignored, it would seem that there
was no compatible prior phrase supplying a referent. Furthermore, the considering to
be done depends on both Utterances (1) and (2). Utterance (3) is not about the domain
of discourse, nor is it even a query, but rather about the discourse per se: it establishes
a particular focus of attention for the discourse, namely, the performance of the
automobile division over the last five years. Utterance (4) can be treated properly only
by taking the context of the preceding utterances into account. What we have here is a
request for a histogram of the monthly performance of the automobile division over the
last five years. Finally, Utterance (4) is a request for a particular action to be taken;
although ostensibly it asks for a ‘“‘yes’” or '“no' response, neither of these would be
adequate in and of itself; the ‘‘yes’” requires that the system supply the histogram and
the “no’’ obligates it to explain why it cannot do so.

Several areas of active research are concerned with devising methods for
supporting NL communication on a broader basis. Some of this research is directly
concerned with natural language; natural language provides both a set of particular
problems to be addressed and a set of constraints on the theories being developed.
Other research involves more general study of theories and models of purposeful action,
but is nonetheless very relevant to work in NL. Activities in the following areas are of
particular interest:

1. The connection between language and action: recognizing what a user
intends (to do or have done) from what he says, as well as generating
utterances that satisfy various intentions [18, 1, 17, 64, 3].

2. The connection between the intentions of individual utterances and the
overall purpose of a discourse [47, 33].
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3. Interactions among beliefs, desires, intentions, actions and pians
[73, 71, 9, 58, 27].

These issues are of interest to a broad range of intellectual communities:
theoretical computer science (because of their relevance to distributed computing
systems), artificial intelligence (with its long-standing interest in machine reasoning and
planning), the philosophy of mind (especially practical reasoning), and the philosophy of
language (in which speech acts and reference are of central concerns). There continues
to be much more to language understanding than language.
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